## Project 3: Driving Forces using Basin2

Basin2 is a finite difference code written by Craig Bethke and students at the University of Illinois. It runs under Windows XP. A complete users guide is available as a pdf file on the web page. I also include a truncated version which refers to the sections necessary for this project. Input files are also available to download from the web page.

1) One-Dimensional Compaction - using the data file B2in_7.1-compaction (Input 7.1 in users guide)
a) Reproduce the results in Figure 7.1 for permeability of 10 and 0.1 microDarcy;
b) Reproduce the results in Figure 7.2 for sedimentation rates of 100 and $1 \mathrm{~mm} / \mathrm{yr}$
c) For part b, also generate plots for z-permeability and z-specific discharge versus depth
d) Discuss the implications of results a-c for development of compaction driven flow
2) Compaction in Niger Delta - using the data file B2in_7.2-compaction (Input 7.2 in users guide)
a) Reproduce results in Figure 7.3 for time $=-2.5$
b) Run results for time $=-2.5$ assuming that the entire basin is composed of i) shale and ii) sand
c) Run results assuming that sedimentation rates are $1 / 2$ what are observed (double time for each layer)
d) Discuss your results
3) Topographic Recharge - using the data file B2in_8.1-topo (Input 8.1 in users guide)
a) Replicate results shown in Figures 8.1 and 8.3
b) Generate plots showing specific discharge versus length in both units for part a
c) Discuss results in $a$ and $b$ above as well as compare velocities generated by compaction versus topographic recharge
4) Thermal Convection - using the data file B2in_10.1-thermal (Input 10.1 in users guide)
a) Determine the permeability at which free convection will occur assuming a sediment thickness of 1 km , a constant heat flow of 2 hfu , and no topography.
b) How is free convection in part a modified by topographic recharge of 50 m ? What does this imply about the relative importance of the 3 driving forces modeled above?
